Foliations on Complex Projective Surfaces
نویسنده
چکیده
In this text we shall review the classification of foliations on complex projective surfaces according to their Kodaira dimension, following McQuillan’s seminal paper [MQ1] with some complements and variations given by [Br1] and [Br2]. Most of the proofs will be only sketched, and the text should be considered as guidelines to the above works (and related ones), with no exhaustivity nor selfcontainedness pretention. There are no new results, but some old results are presented in a new way, by adopting systematically an orbifold point of view.
منابع مشابه
On Fano Foliations
In this paper we address Fano foliations on complex projective varieties. These are foliations F whose anti-canonical class −KF is ample. We focus our attention on a special class of Fano foliations, namely del Pezzo foliations on complex projective manifolds. We show that these foliations are algebraically integrable, with one exceptional case when the ambient space is Pn. We also provide a cl...
متن کاملOn holomorphic foliations with projective transverse structure
We study codimension one holomorphic foliations on complex projective spaces and compact manifolds under the assumption that the foliation has a projective transverse structure in the complement of some invariant codimension one analytic subset. The basic motivation is the characterization of pull-backs of Riccati foliations on projective spaces. Our techniques apply to give a description of th...
متن کاملNormal surfaces in topologically finite 3–manifolds
This paper investigates normal surface theory in topologically finite 3–manifolds with ideal triangulations. Treated are closed and non– compact normal surfaces, the projective solution space and the projective admissible solution space, as well as the leaf spaces of the transversely measured singular codimension–one foliations defined by admissible solutions. AMS Classification 57M25, 57N10
متن کاملStability of Foliations Induced by Rational Maps
We show that the singular holomorphic foliations induced by dominant quasi-homogeneous rational maps fill out irreducible components of the space Fq(r, d) of singular foliations of codimension q and degree d on the complex projective space P , when 1 ≤ q ≤ r − 2. We study the geometry of these irreducible components. In particular we prove that they are all rational varieties and we compute the...
متن کاملNonuniformisable Foliations on Compact Complex Surfaces
We give a complete classification of holomorphic foliations on compact complex surfaces which are not uniformisable, i.e., for which universal coverings of the leaves do not glue together in a Hausdorff way. This leads to complex analogs of the Reeb component defined on certain Hopf surfaces and certain Kato surfaces. 2000 Math. Subj. Class. 32J15, 37F75, 57R30.
متن کامل